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Abstract: An efficient synthesis of (+)-disparlure has been achieved in >99.8% ee via the
Sharpless asymmetric dihydroxylation followed by Mitsunobu inversion of one hydroxyl
group and conversion of the resultant erythro diol to the cis epoxide.

Construction of enantiomerically pure, disubstituted cis-epoxides represents a key issue in the synthesis of
many low molecular weight natural products, such as insect pheromones and other semiochemicals.! A typical
example is (+)-disparlure, the sex attractant emitted by the female gypsy moth, Porrhetria dispar (L.), whose
structure has been established as (+)-(7R,88)-cis-7,8-epoxy-2-methyloctadecane (1).2 Because of the growing
demand for this pheromone in very high enantiomeric purity for pest control, many syntheses of (+)-disparlure
have been reported. The classical approaches employ enantiopure natural products as starting materials, such as L-
glutamic acid,!2 L-(+)-tartaric acid,3 D-(+)-glyceraldehyde,* D-glucose,5 and D-ribose.6 Alternative approaches
are based on enantiomerically pure sulfoxides,” and the Sharpless asymmetric epoxidation reaction.?

Disubstituted cis-epoxides, III-c, can be easily obtained with high stereospecificity from erythro diols,
II-c, in a three-step, one-pot procedure.® This transformation, combined with the Sharpless asymmetric
dihydroxylation (AD) of Z-alkenes, I-c, could therefore be the strategy of choice (Scheme 1). However, the AD
reaction, which has been optimized to remarkably high levels of enantioselectivity with E-alkenes, has not reached
a comparable efficiency with Z-alkenes todate. 1
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The alternative approach, based on the AD reaction with E-alkenes, which produces threo diols, requires
regioselective functionalization of the two hydroxyl groups in order to achieve inversion at the desired position.
We have recently reported on the syntheses of all four isomers of disparlure, including the biologically active one,
using that strategy (Scheme 2).!! Starting with (E)-ethyl pentadec-4-enoate, 2, and using AD-mix-a afforded an
(S.,8)-hydroxylactone with 95% ee (and with > 99.5% ec after single recrystallization) followed by silylation to
give 3. The latter was converted to 4 via a three-step sequence, including reduction to lactol with DIBAL-H,
Wittig olefination, and catalytic hydrogenation. Finally, the regioselective cyclization to 1 was achieved by
mesylation of the free alcohol and desilation of the silyl ether with tetrabutylammonium fluoride.
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Although our synthetic disparlure was found to be enantiomerically pure,!2 attempts to scale up the
synthesis to gram quantities afforded the pheromone with lower enantiomeric purity (80-95%). Assuming that the
problem arises from partial exchange of the silyl group between the two vicinal oxygen atoms of 4, probably
under base catalysis, we repeated the reaction using -butyldiphenylsilyl ether, which is known to be more
immune to such isomerizations. 13 Unfortunately, neither this approach nor the employment of tetrahydropyranyl
ether as a protecting group afforded the final product with more than 95% ee.

Here we report on an improved approach to (+)-disparlure, one that can be carried out on a large scale
without loss of enantiomeric purity (Scheme 3). This strategy employs an easily available threo-diol with a
regioselective inversion of the configuration at one center to give erythro-diol.14
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Reaction of 2 with AD-mix-p afforded (R,R)-hydroxylactone 5 in 98% ee. Mitsunobu reaction!S of
hydroxylactone 5 with three equivalents each of PPh3, benzoic acid and DEAD in dry benzene afforded 6 with
complete inversion of configuration as was evident from NMR.16,17 Reduction of 6 at -78°C with 2 equiv
DIBAL-H afforded the corresponding lactol without cleavage of the benzoate ester. Wittig reaction of the latter
with isobutylidenetriphenylphosphorane afforded olefin 7 as a 1:4 mixture of the E and Z isomers.!8 Catalytic
hydrogenation of 7 in methanol over 10% palladium on carbon yielded 8-benzoyloxy-2-methyloctadecan-7-ol,
which was then hydrolyzed in hot aqueous KOH to give the erythro diol, 8.19 Diol 8 was recrystallized from
methanol and then converted to (+)-disparlure in a three-step procedure involving treatment with triethyl
orthoacetate and PPTS in refluxing toluene, then with TMSCI, and finally with KOH in cold THF.9 Purification
of the crude product by column chromatography (silica gel) afforded 1 in > 99.8% ee.!2 This product was found
to be identical (H NMR, 13C NMR, IR, [a]D, MS) with an authentic sample of (+)-disparlure.20
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mixture was stirred at the same temperature for 2 h and then work-up with aqueous NH4Cl (1 mL) and diethyl
ether to give the corresponding lactol (431 mg, 95%). n-BuLi (2 mL of 2.5M solution in hexane, 5.0 mmol) was
added to a solution of isobutyltriphenylphosphonium bromide (1.99g, 5 mmol) in THF (10 mL) at 0°C, and the
mixture was stirred for 1.5 h. Solution of above mentioned crude lactol (431 mg) in dry THF (2 mL) was added,
the mixture was stirred for 2 h and then worked up with aqueous NH4Cl and ether, followed by chromatography
over silica gel (hexane:ethyl acetate 9:1) affording 8-benzoyloxy-7-hydroxy-2-methyloctadec-3-ene, 7 (334 mg,
70%). 1H NMR: 8.05 (m, 2H), 7.55 (m, 1H), 7.43 (m, 2H), 5.46-5.14 (m, 2H), 5.11 (m, 1H), 3.82 (m, 1H),
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19. A solution of 7 (334 mg) was mixed with 10% Pd-C (80 mg) in methanol (5 mL) and stirred under hydrogen
atmosphere for 16 h, filtered through celite, and the solvent was removed in vacuuo. The residue was heated with
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